Uzmanību! Pieejami jaunāki mācību materiāli pēc Skola2030 programmas.
Satura rādītājs:
Materiāli skolotājiem
| Numurs | Nosaukums | Apraksts |
|---|---|---|
| 1. | Satura rādītājs | |
| 2. | Skolotājam | Proporcionāli nogriežņi. Trijstūru līdzība. |
Teorija
| Numurs | Nosaukums | Apraksts |
|---|---|---|
| 1. | Attiecība. Proporcionāli nogriežņi | Nogriežņu attiecība, proporcionāli nogriežņi. |
| 2. | Proporcijas, Talesa teorēma | Talesa teorēma (paralēlas taisnes, kas atšķeļ vienādus nogriežņus). |
| 3. | Teorēma par proporcionāliem nogriežņiem | |
| 4. | Līdzīgi trijstūri | Līdzīgi trijstūri, līdzības koeficients. |
| 5. | Līdzīgu trijstūru perimetrs un laukums | Līdzīgu trijstūru perimetru un laukumu attiecība. |
| 6. | Trijstūru līdzība | Trijstūru līdzības pazīmes. |
Uzdevumi
| Numurs | Nosaukums | Tips | Grūtības pakāpe | Punkti | Apraksts |
|---|---|---|---|---|---|
| 1. | Nogriežņu garums no attiecības I | 1. izziņas līmenis | zema | 1 p. | Nogriežņa garuma aprēķināšana, ja zināma attiecība un viens nogrieznis. |
| 2. | Nogriežņa garums no attiecības II | 1. izziņas līmenis | zema | 1 p. | Nogriežņa garuma aprēķināšana (attiecības). |
| 3. | Nogriežņu attiecība III | 2. izziņas līmenis | vidēja | 3 p. | Nogriežņa daļu aprēķināšana, ja dots viss nogrieznis un attiecība. |
| 4. | Proporcionāli nogriežņi I | 1. izziņas līmenis | zema | 1 p. | Proporcionāli nogriežņi. Proporcijas nezināmā locekļa aprēķināšana, ja tas atrodas skaitītājā. |
| 5. | Proporcionāli nogriežņi II | 2. izziņas līmenis | vidēja | 2 p. | Proporcionāli nogriežņi. Proporcijas nezināmā locekļa aprēķināšana, ja tas atrodas saucējā. Rezultāts decimāldaļa |
| 6. | Līdzīgu trijstūru pieraksts | 1. izziņas līmenis | zema | 1 p. | Līdzīgu trijstūru malu proporcijas uzrakstīšana. |
| 7. | Malu attiecība, ja dots zīmējums un līdzības izteiksme | 1. izziņas līmenis | vidēja | 1 p. | Uzraksta malu attiecību, ja dots zīmējums un līdzības izteiksme. |
| 8. | Līdzīgi trijstūri I | 2. izziņas līmenis | vidēja | 2 p. | Doti līdzīgi taisnleņķa trijstūri, jāaprēķina mala. |
| 9. | Līdzīgi trijstūri II | 2. izziņas līmenis | vidēja | 2 p. | Dota trijstūru līdzība, jāaprēķina mala. |
| 10. | Līdzīgi trijstūri, k<1 | 2. izziņas līmenis | vidēja | 4 p. | Dota trijstūru līdzība, k<1, , jāaprēķina mala. |
| 11. | Līdzīgi trijstūri, k>1 | 2. izziņas līmenis | vidēja | 4 p. | Dota trijstūru līdzība, k>1, jāaprēķina mala. |
| 12. | Līdzīgu trijstūru perimetri un laukumi | 2. izziņas līmenis | vidēja | 3 p. | Līdzīgu trijstūru perimetri un laukumi. |
| 13. | Trijstūra perimetrs | 2. izziņas līmenis | vidēja | 3 p. | Līdzīgu trijstūru malas un perimetrs. |
| 14. | Trijstūra laukums | 2. izziņas līmenis | vidēja | 4 p. | Līdzīgu trijstūru laukumi un perimetri. Lineārs vienādojums. |
| 15. | Trijstūru līdzības pierādījuma pieraksts | 2. izziņas līmenis | vidēja | 2,5 p. | 1. pazīme. Pareizi pierakstīt līdzīgus trijstūrus pēc attēla. |
| 16. | Divi taisnleņķa trijstūri. Mala | 2. izziņas līmenis | vidēja | 4 p. | 1. pazīme. Divi trijstūri, jāpierāda līdzība, jāaprēķina mala. Bisektrise. |
| 17. | Divi taisnleņķa trijstūri. Pitagora teorēma | 2. izziņas līmenis | vidēja | 5 p. | 1. pazīme. Taisnleņķa trijstūri, Pitagora teorēma, jāpierāda līdzība, jāaprēķina mala. Bisektrise. |
| 18. | Trijstūru līdzības pierādījums. Paralēlas malas | 2. izziņas līmenis | vidēja | 4 p. | 1. pazīme. Trijstūri ar paralēlām malām, jāpierāda līdzība, jāaprēķina mala. |
| 19. | Trijstūru līdzības pierādījums. Lineārs vienādojums | 2. izziņas līmenis | vidēja | 4 p. | 1. pazīme. Trijstūri ar paralēlām malām, malas aprēķināšana sastādot lineāru vienādojumu, jāpierāda līdzība. |
| 20. | Kvadrāts taisnleņķa trijstūrī | 2. izziņas līmenis | augsta | 4 p. | Vienādojums. Jāatrod perimetrs kvadrātam, kas ievilkts taisnleņķa trijstūrī. |
| 21. | Taisnleņķa trijstūris ar perpendikulu | 2. izziņas līmenis | vidēja | 4 p. | 1. pazīme. Taisnleņķa trijstūrī novilkts perpendikuls, pierādīt līdzību, aprēķināt malu. |
| 22. | Praktisks uzdevums par ēnu | 2. izziņas līmenis | vidēja | 2 p. | Ēkas augstuma noteikšana pēc ēnu garuma. |
| 23. | Nogriežņu attiecības uzrakstīšana | 2. izziņas līmenis | vidēja | 4 p. | *Dots nogrieznis, uzraksti prasīto nogriežņu attiecību. * nav dzm programmā. |
Eksāmenu uzdevumi (PROF)
| Numurs | Nosaukums | Tips | Grūtības pakāpe | Punkti | Apraksts |
|---|---|---|---|---|---|
| 1. | Līdzīgi trijstūri trijstūrī (2009) | Citi | vidēja | 1 p. | Līdzīgi trijstūri. |
| 2. | Līdzīgi trijstūri (m,m,m) (2008) | Citi | vidēja | 1 p. | 2008.gada matemātikas eksāmens 9.klasei. Līdzīgi trijstūri. |
| 3. | Līdzīgu trijstūru malas (2007) | Citi | vidēja | 1 p. | 2007.g. matemātikas eksāmens 9.kl. Malas aprēķināšana. |
Testi
| Numurs | Nosaukums | Ieteicamais ilgums: | Grūtības pakāpe | Punkti | Apraksts |
|---|---|---|---|---|---|
| 1. | Proporcionāli nogriežņi | 00:00:00 | vidēja | 10 p. | Nogriežņi, to attiecības, proporcionāli nogriežņi. |
| 2. | Līdzīgi trijstūri | 00:00:00 | vidēja | 6 p. | Trijstūru līdzības pazīmes, līdzības koeficients. |
| 3. | Trijstūru līdzība | 00:00:00 | vidēja | 8,5 p. | Pārbaudi prasmi pierādīt un risināt! |