Video mācību materiāli
"MATEMĀTIKA II"
Pierādi apgalvojumu \(A(n)\)visiem naturāliem skaitļiem \(n\) izteiksme 82n+1+1 dalās ar 9.
 
Risini savos pierakstos un papildini doto pierādījumu!
 
1) Indukcijas bāze
Izteikums \(A(1)\) ir patiess, jo 8i+1=i, kas dalās ar 9
 
2) Induktīvais pieņēmums
Pieņemsim, ka brīvi izvēlētam naturālam skaitlim \(k\) izteikums \(A(k)\) ir patiess, t.i., 82k+1+1 dalās ar 9.
 
3) Induktīvā pāreja
Pierādīsim, ka patiess ir izteikums \(A(k+1)\), t.i., 82k+i+i dalās ar 9.
 
Pārveidojam izteiksmi, izmantojot pakāpju īpašību.
Iznesam pirms iekavām 82, vispirms izteiksmei pieskaitot un atņemot 82.
...8i82+82¯82¯+1=...=8282k+1+1i
 
Redzam, ka algebriskās summas pirmais saskaitāmais dalās ar 9 pēc induktīvā pieņēmuma. Arī skaitlis 63 dalās ar 9. Tātad algebriskā summa dalās ar .
  
Secinājums
Gan indukcijas bāze, gan pāreja ir pierādītas.
Redzam, ka no izteikuma \(A(k)\) patiesuma seko \(A(k+1)\) patiesums.
Esam pierādījuši \(A(n)\) patiesumu visām \(n\) vērtībām.
 
Atsauce:
Materiālu sagatavoja Mg. math. Laima Baltiņa, JTV skolotāja
Lai iesniegtu atbildi un redzētu rezultātus, Tev nepieciešams autorizēties. Lūdzu, ielogojies savā profilā vai reģistrējies portālā!