Teorija

Līdz šim analizējām datus pēc vienas pazīmes. Paskatīsimies, vai starp divām dažādām pazīmēm pastāv kāda sakarība. Piemēram, vai skolēna sekmes ir atkarīgas no tā, cik tālu viņš dzīvo no skolas, vai dzīvnieka masa ietekmē tā mūža garumu.
Divu vai vairāku datu kopu savstarpējo saistību raksturo korelācija.
Lai noskaidrotu divu pazīmju sasvstarpējo korelāciju, izmanto grafisko attēlu korelācijas diagrammu, kurā koordinātu plaknē katram pētījuma elementam atbilst punkts, kura abscisa (x) ir šī elementa vienas pazīmes skaitliskā vērtība, bet ordināta (y) - šim pašam elementam atbilstošā otras pazīmes skaitliskā vērtība.
Piemērs:
Izpētīsim, vai nedēļā pavadīto stundu skaits apmācības portālā Uzdevumi.lv un nopelnīto izcilo vērtējumu skaits ir savstarpēji saistīti lielumi - vai pastāv korelācija?
 
Dati ir apkopoti biežuma tabulā.
VārdsRenāteMatīssVilnisElīnaEinārsReinisJanaVitaMarija
Stundas
2
3
4
5
6
3
7
7
8
Izcilo vērtējumu skaits
3
2
5
3
6
4
7
5
8
 
Ruutinjas 1.jpg
Katrs punkts grafikā atbilst kādam skolēnam.
 
Piemēram, Vita Uzdevumos.lv nedēļā vingrinās 7 stundas (punkta abscisa) un nopelnījusi 5 izcilus vērtējumus (punkta ordināta).
Starp abām pazīmēm pastāv korelācija, ja, atliekot abu pazīmju vērtībām atbilstošus punktus (x1;y1), tie izvietojas kādas iedomātas līnijas abās pusēs. Ja iedomātā līnija ir taisne, tad pastāv lineāra korelācija.
Taču, ja punkti ir pārāk izkliedēti (un šādu līniju novilkt nevar), tad atliek secināt, ka korelācija starp pazīmēm nepastāv.
 
Rūtiņas 3.2.jpg
Pozitīva korelācija (punkti novietojas ap iedomātu augošu taisni) - palielinoties vienas pazīmes vērtībai, palielinās otras pazīmes vērtības.
Rūtiņas 3.3.jpg
Negatīva korelācija (punkti novietojas ap iedomātu dilstošu taisni) - palielinoties vienas pazīmes vērtībai, samazinās otras pazīmes vērtības.
Rūtiņas 2.2.jpg
Korelācija nepastāv - vienas pazīmes izmaiņa neietekmē otras pazīmes vērtības izmaiņu.
 
Visbiežāk lietotais korelācijas raksturotājs ir Pīrsona korelācijas koeficients r. Tas parāda, cik cieša ir divu pazīmju vērtību lineārā sakarība, proti, - cik cieši atliktie punkti izvietojas ap kādu iedomātu taisni. Korelācijas koeficients r1;1.
Tiek uzskatīts, ka lineārā sakarība starp pazīmēm ir
  • cieša, ja r0,8;1;
  • vidēja, ja r0,4;0,8;
  • vāja, ja r0;0,4.
Atsauce:
Matemātika 11.klasei /Baiba Āboltiņa, Dainis Kriķis, Kārlis Šteiners. -Rīga : Zvaigzne ABC, 2012. – 120. lpp.  Skola2030 mācību un metodiskie līdzekļi