"Konusa virsmas laukums vienāds ar tā pamata laukuma un sānu virsmas (riņķa sektora) laukuma summu."
${S}_{\mathit{pilnai}\phantom{\rule{0.147em}{0ex}}\mathit{virsmai}}={S}_{\mathit{pam}.}+{S}_{sā\mathit{nu}\phantom{\rule{0.147em}{0ex}}v.}$
${S}_{\mathit{pam}.}={S}_{\mathit{ri}ņķ\mathit{im}}=\mathrm{\pi }{R}^{2}$ ($$R$$ - pamata riņķa rādiuss)
"Konusa sānu virsmas jeb sektora laukumu aprēķina, izmantojot formulu ${S}_{sā\mathit{nu}\phantom{\rule{0.147em}{0ex}}v.}$$$=$$$\mathrm{\pi }R\mathrm{\ell }$, kur $\mathrm{\ell }$ - konusa veidule."
${S}_{\mathit{pilnai}\phantom{\rule{0.147em}{0ex}}\mathit{virsmai}}=\mathrm{\pi }{R}^{2}+\mathrm{\pi }R\mathrm{\ell }$
Piemērs:
Konusa veidule ir $$10$$ cm, bet pamata rādiuss ir $$8$$ cm. Aprēķini konusa sānu virsmas laukumu un pilnas virsmas laukumu! (Aprēķinos izmanto aptuveno sakarību $\mathrm{\pi }\approx 3$.)

1) ${S}_{\mathit{pam}.}={S}_{\mathit{ri}ņķ\mathit{im}}=\mathrm{\pi }{R}^{2}\approx 3\cdot {8}^{2}=3\cdot 64=192\phantom{\rule{0.147em}{0ex}}\left({\mathit{cm}}^{2}\right)$

2) ${S}_{sā\mathit{nu}\phantom{\rule{0.147em}{0ex}}v.}=\mathrm{\pi }R\mathrm{\ell }\approx 3\cdot 8\cdot 10=240$

3) ${S}_{\mathit{pilnai}\phantom{\rule{0.147em}{0ex}}\mathit{virsmai}}={S}_{\mathit{pam}.}+{S}_{sā\mathit{nu}\phantom{\rule{0.147em}{0ex}}v.}\approx 192+240=432\phantom{\rule{0.147em}{0ex}}\left({\mathit{cm}}^{2}\right)$