Lai polinomu izdalītu ar monomu, ar monomu jādala katrs polinoma loceklis, un iegūtie dalījumi jāsaskaita.
$\left(\mathit{ab}+\mathit{ac}\right):a=\mathit{ab}:a+\mathit{ac}:a=\frac{\overline{)a}b}{\overline{)a}}+\frac{\overline{)a}c}{\overline{)a}}=b+c$

Atceries, ka dalot pakāpes ar vienādām bāzēm, to kāpinātājus atņem.

$\frac{{a}^{m}}{{a}^{n}}={a}^{m}:{a}^{n}={a}^{m-n}$
Piemērs:
$a\right)\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\left(28{a}^{5}+14\mathit{ab}\right):7=28{a}^{5}:7+14\mathit{ab}:7=\frac{{}^{4}\overline{)28}{a}^{5}}{{}^{1}\overline{)7}}+\frac{{}^{2}\overline{)14}\mathit{ab}}{{}^{1}\overline{)7}}=4{a}^{5}+2\mathit{ab}$

$\begin{array}{l}b\right)\phantom{\rule{0.294em}{0ex}}\left(5{x}^{3}y-3{x}^{4}\right):{x}^{2}=5{x}^{3}y:{x}^{2}-3{x}^{4}:{x}^{2}=\\ \\ =5{x}^{3-2}y-3{x}^{4-2}=5{x}^{1}y-3{x}^{2}=5\mathit{xy}-3{x}^{2}\end{array}$

$\begin{array}{l}c\right)\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\left(10{x}^{4}y-5{x}^{2}{y}^{2}\right):5{x}^{2}y=10{x}^{4}y:5{x}^{2}y-5{x}^{2}{y}^{2}:5{x}^{2}y=\frac{{}^{2}\overline{)10}{x}^{4}\overline{)y}}{{}^{1}\overline{)5}{x}^{2}\overline{)y}}-\frac{{}^{1}\overline{)5{x}^{2}}{y}^{2}}{{}^{1}\overline{)5{x}^{2}}y}=\\ \\ =2{x}^{4}:{x}^{2}-{y}^{2}:y=2{x}^{4-2}-{y}^{2-1}=2{x}^{2}-{y}^{1}=2{x}^{2}-y\end{array}$