"MATEMĀTIKA 3. KLASEI"

 STARPĪBA $\phantom{\rule{0.588em}{0ex}}↙\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}↘$ $\stackrel{⏞}{8\phantom{\rule{0.147em}{0ex}}-\phantom{\rule{0.147em}{0ex}}3}\phantom{\rule{0.147em}{0ex}}=\phantom{\rule{0.147em}{0ex}}\stackrel{⏞}{5}$ $↗\phantom{\rule{1.323em}{0ex}}↖$ MAZINĀMAIS  (8)        MAZINĀTĀJS (3)

MAZINĀMAIS - MAZINĀTĀJS = STARPĪBA

 Iedomājies, ka MAZINĀMAIS ir MAISS.Ja maisā ir kaut kas iekšā, tad no tā kaut ko var izņemt ārā.
Mazināmais - skaitlis, no kura atņem.

Mazinātājs - skaitlis, kuru atņem.

Starpība - atņemšanas rezultāts.
Atņemšanas paņēmieni
Bez pārejas citā desmitā

Piemērs:
Aprēķini starpību 39 - 12
Vispirms atņem desmitus, pēc tam atņem vienus
 $\begin{array}{l}39\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}-\phantom{\rule{0.147em}{0ex}}12\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.294em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}↙↘\\ \phantom{\rule{0.294em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}10\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.735em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}2\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\end{array}$

39 - 12 = 39 - 10 - 2 = (39 - 10) - 2 = 29 - 2 = 27

vai

Atņem atsevišķi desmitus un atsevišķi vienus

39 - 12 = (30 - 10) + (9 - 2) = 20 + 7 = 27

Ar pāreju citā desmitā

Piemērs:
Aprēķini starpību 37 - 9
Vispirms sadali vienus tā, lai, atņemot pirmo ciparu, būtu pilni desmiti
 $\begin{array}{l}37\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}-\phantom{\rule{0.147em}{0ex}}9\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.294em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}↙↘\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.441em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}7\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.882em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}2\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\end{array}$

37 - 9 = 37 - 7 - 2 = (37 - 7) - 2 = 30 - 2 = 28

Atsauce:
http://buldberni.blogspot.com/2012/05/blog-post.html