24.
maijā
Eksāmens MATEMĀTIKĀ 12. KLASEI
Trenējies ŠEIT!

### Uzdevums:

5p.
Atrisini vienādojumu sistēmu
$\left\{\begin{array}{l}{x}^{3}+{y}^{3}=61\\ {14}^{x+y}=14\end{array}\right\$

Pirmo raksti atrisinājumu, kurā $x$ ir pozitīvs!
$\left\{\begin{array}{l}x=i\phantom{\rule{0.147em}{0ex}}\\ y=i\end{array}\right\\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\left\{\begin{array}{l}x=i\\ y=i\end{array}\right\$

Papildjautājums.
Papildini kubu summas formulu!
${x}^{3}+{y}^{3}=\left(xi\right)\left({x}^{2}i+{y}^{2}\right)$

Eksāmena formulu lapa

Lai iesniegtu atbildi un redzētu rezultātus, Tev nepieciešams autorizēties. Lūdzu, ielogojies savā profilā vai reģistrējies portālā!