Matemātikas eksāmena formulu lapā ir dots vienības riņķis. No šī riņķa var nolasīt daudzveidīgu informāciju par leņķiem un to vērtībām.

Zinot, kur atrodas $$30°$$, $$45°$$ un $$60°$$, var precīzi noteikt vēl $$9$$ leņķus.

Attiecīgiem leņķiem var noteikt precīzas  vērtības uz $$OX$$ un $$OY$$ asīm.
Vērojot uz kosinusa ass atliktās vērtības, var secināt, ka
$\begin{array}{l}A=\frac{\sqrt{3}}{2},\phantom{\rule{1.029em}{0ex}}B=\frac{\sqrt{2}}{2},\phantom{\rule{1.176em}{0ex}}C=\frac{1}{2}\\ D=-\frac{\sqrt{3}}{2},\phantom{\rule{0.294em}{0ex}}E=-\frac{\sqrt{2}}{2},\phantom{\rule{0.294em}{0ex}}F=-\frac{1}{2}\\ Z=-\frac{\sqrt{3}}{2},\phantom{\rule{0.294em}{0ex}}V=-\frac{\sqrt{2}}{2},\phantom{\rule{0.294em}{0ex}}P=-\frac{1}{2}\end{array}$

Zinot, ka uz $$OY$$ ass nolasa leņķa sinusa vērtību, bet uz $$OX$$ ass nolasa leņķa kosinusa vērtību, var noteikt, piemēram, ka
$\begin{array}{l}\mathit{sin}\phantom{\rule{0.147em}{0ex}}120\mathrm{°}=\frac{\sqrt{3}}{2},\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\mathit{sin}\phantom{\rule{0.147em}{0ex}}135\mathrm{°}=\frac{\sqrt{2}}{2},\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\mathit{sin}\phantom{\rule{0.147em}{0ex}}210\mathrm{°}=-\frac{1}{2}\\ \\ \mathit{cos}\phantom{\rule{0.147em}{0ex}}150\mathrm{°}=-\frac{\sqrt{3}}{2},\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\mathit{cos}\phantom{\rule{0.147em}{0ex}}135\mathrm{°}=-\frac{\sqrt{2}}{2},\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\mathit{cos}\phantom{\rule{0.147em}{0ex}}240\mathrm{°}=-\frac{1}{2}\end{array}$