Lai raksturotu figūru laukumu, lieto laukuma vienības.

Lai pārveidotu laukuma vienības, ir labi jāzina garuma vienību sakarības:
$$1\ cm=10\ mm$$
$$1\ dm=10\ cm=100\ mm$$
$$1\ m=10\ dm=100\ cm=1000\ mm$$
Svarīgi!
Skolēni bieži kļūdās, domājot, ja $$1\ cm=10\ mm$$, tad $$1$$ kvadrātcentimetrs ir $$10$$ kvadrātmilimetri. Bet tā nav!

Laukuma vienību iegūst, vienu vienības kvadrāta malu reizinot ar otru malu:
$1 {\mathit{cm}}^{2}=10\phantom{\rule{0.147em}{0ex}}\mathit{mm}\cdot 10\phantom{\rule{0.147em}{0ex}}\mathit{mm}=100\phantom{\rule{0.147em}{0ex}}{\mathit{mm}}^{2}$

Izpēti, kā pāriet no vienām laukuma vienībām uz citām!

$\begin{array}{l}1\phantom{\rule{0.147em}{0ex}}{\mathit{km}}^{2}=1000\phantom{\rule{0.147em}{0ex}}m\cdot 1000\phantom{\rule{0.147em}{0ex}}m\phantom{\rule{0.147em}{0ex}}=1\phantom{\rule{0.147em}{0ex}}000\phantom{\rule{0.147em}{0ex}}000\phantom{\rule{0.147em}{0ex}}{m}^{2}\\ 1\phantom{\rule{0.147em}{0ex}}{\mathit{dm}}^{2}=0,1\phantom{\rule{0.147em}{0ex}}m\phantom{\rule{0.147em}{0ex}}\cdot 0,1\phantom{\rule{0.147em}{0ex}}m\phantom{\rule{0.147em}{0ex}}=0,01\phantom{\rule{0.147em}{0ex}}{m}^{2}\\ 1\phantom{\rule{0.147em}{0ex}}{\mathit{cm}}^{2}=\phantom{\rule{0.147em}{0ex}}0,01\phantom{\rule{0.147em}{0ex}}m\cdot 0,01\phantom{\rule{0.147em}{0ex}}m\phantom{\rule{0.147em}{0ex}}=0,0001\phantom{\rule{0.147em}{0ex}}{m}^{2}\\ 1\phantom{\rule{0.147em}{0ex}}{\mathit{mm}}^{2}=0,001\phantom{\rule{0.147em}{0ex}}m\cdot 0,001\phantom{\rule{0.147em}{0ex}}m\phantom{\rule{0.147em}{0ex}}=\phantom{\rule{0.147em}{0ex}}0,000001\phantom{\rule{0.147em}{0ex}}{m}^{2}\end{array}$