Decimāldaļu dalīšana
Svarīgi!
"Skaitli dalot ar decimāldaļu, dalītājā komatu atmet, bet dalāmajā to pārvieto par tik cipariem pa labi, cik decimālciparu bija dalītājā. Pēc tam dala kā ar veselu skaitli."

Piemērs:
 $\begin{array}{l}\underset{¯}{\phantom{\rule{0.147em}{0ex}}24,064:0,8}=30,08\\ \underset{¯}{\begin{array}{l}240,64:8\\ 240\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\end{array}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}64\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}64}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}0\end{array}$ Dalītājam ($$0,8$$) komatu atmet,   tātad dalāmajam ($$24,064$$) komatu pārvieto pa labi par $$1$$ ciparu. $$24,064 : 0,8 = 240,64 : 8 = 30,08$$ $\begin{array}{l}\underset{¯}{115,5:0,33}=350\\ 11550:33\\ \underset{¯}{\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}99\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}165\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{165}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}0\end{array}$ Dalītājam ($$0,33$$) komatu atmet, tātad dalāmajam ($$115,5$$) komatu pārvieto pa labi par $$2$$ cipariem (pazūd komats, pievieno beigās nulli).$$115,5 : 0,33 = 11550 : 33 = 350$$
 $\begin{array}{l}\underset{¯}{\phantom{\rule{0.147em}{0ex}}61,6605:55,5}=1,111\\ \underset{¯}{\begin{array}{l}616,605:555\\ 555\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\end{array}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}616\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{555\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}610\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{555\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}555\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{555}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}0\end{array}$ Dalītājam ($$55,5$$) komatu atmet, tātad dalāmajam ($$61,6605$$) komatu pārvieto pa labi par $$1$$ ciparu.$$61,6605 : 55,5 = 616,605 : 555 = 1,111$$