Teorija

Lai iegūtu funkcijas y=fx grafiku, funkcijas y=fx grafiku attēlo simetriski attiecībā pret x asi tām x vērtībām, kam fx<0.
Tām x vērtībām, kurām fx>0, funkcijas y=fx grafiks sakrīt ar y=fx grafiku.
 
Vienkāršāk - tā grafika daļa, kas atrodas zem x ass, attēlojas simetriski virs Ox ass.
 
Piemērs:
Konstruē funkcijas y=log0,5x grafiku.
Vispirms konstruē funkciju, kas atrodas moduļa zīmēs y=log0,5x
Tad sastāda tabulu:
x
0,25
0,5
1
2
4
8
y
2
1
0
−1
−2
−3
 
y=log0,5x
Pamatgrafiks
TEO 4.jpg
 
y=log0,5x
Negatīvo grafika daļu attēlo simetriski pret x asi:
TEO 4.1.jpg
Ne vienmēr modulis izmaina pamatfunkcijas grafiku.
 
Piemērs:
Konstruē y=2x grafiku.
Pamatfunkcija: y=2x
x
−1
0
1
2
3
y
0,5
1
2
4
8
Funkcijas y=2x grafiks sakrīt ar y=2x grafiku, jo tas ir pozitīvs visā definīcijas apgabalā.
TEO 4.3.jpg
 
 
Piemērs:
Konstruē y=x24x+1 grafiku.
Pirmkārt, konstruē y=x24x+1. Grafiks ir parabola, kam zari vērsti uz augšu (jo a>0).
Atrod virsotnes koordinātas:
x0=b2a=42=2y0=2242+1=3
Virsotne ir punktā 2;3.
 
Sastāda tabulu:
x
3
4
5
y
−2
1
6
 
y=x24x+1
TEO 4.4.jpg
 
y=x24x+1
TEO 4.5.jpg
 
Grafiku konstruē vienā koordinātu plaknē. Šeit divi zīmējumi doti uzskatāmības dēļ.
 
Parabolu var konstruēt arī, atdalot binoma kvadrātu (skat. norādīto literatūras avotu).
  
Atsauce:
Algebra 10.-12.klasei 2.daļa / Vitanda Sakse; Rīga,Pētergailis 1999. gads / 26. lpp.