### Teorija

Lai raksturotu figūru laukumu, lieto laukuma vienības.

Lai pārveidotu laukuma vienības, ir labi jāzina garuma vienību sakarības:

$$1cm = 10 mm$$
$$1 dm = 10 cm = 100 mm$$
$$1 m = 10 dm = 100 cm = 1000 mm$$

Skolēni bieži kļūdās, domājot, piemēram,
ja $$1$$ cm = $$10$$ mm, tad $$1$$ kvadrātcentimetrs ir $$10$$ kvadrātmilimetri. Bet tā nav!

Laukuma vienību iegūst, vienu vienības kvadrāta malu reizinot ar otru malu:
$1 {\mathit{cm}}^{2}=10\phantom{\rule{0.147em}{0ex}}\mathit{mm}\cdot 10\phantom{\rule{0.147em}{0ex}}\mathit{mm}=100\phantom{\rule{0.147em}{0ex}}{\mathit{mm}}^{2}$

Izpēti, kā pāriet no vienām laukuma vienībām uz citām!

$\begin{array}{l}1\phantom{\rule{0.147em}{0ex}}{\mathit{dm}}^{2}=\phantom{\rule{0.147em}{0ex}}10\phantom{\rule{0.147em}{0ex}}\mathit{cm}\cdot 10\phantom{\rule{0.147em}{0ex}}\mathit{cm}\phantom{\rule{0.147em}{0ex}}=100\phantom{\rule{0.147em}{0ex}}{\mathit{cm}}^{2}\\ \\ 1\phantom{\rule{0.147em}{0ex}}{m}^{2}=\phantom{\rule{0.147em}{0ex}}10\phantom{\rule{0.147em}{0ex}}\mathit{dm}\cdot 10\phantom{\rule{0.147em}{0ex}}\mathit{dm}\phantom{\rule{0.147em}{0ex}}=\phantom{\rule{0.147em}{0ex}}100\phantom{\rule{0.147em}{0ex}}{\mathit{dm}}^{2}\\ \\ 1\phantom{\rule{0.147em}{0ex}}{m}^{2}=\phantom{\rule{0.147em}{0ex}}100\phantom{\rule{0.147em}{0ex}}\mathit{cm}\cdot 100\phantom{\rule{0.147em}{0ex}}\mathit{cm}\phantom{\rule{0.147em}{0ex}}=10\phantom{\rule{0.147em}{0ex}}000\phantom{\rule{0.147em}{0ex}}{\mathit{cm}}^{2}\end{array}$